90 research outputs found

    Superpixel-based Two-view Deterministic Fitting for Multiple-structure Data

    Full text link
    This paper proposes a two-view deterministic geometric model fitting method, termed Superpixel-based Deterministic Fitting (SDF), for multiple-structure data. SDF starts from superpixel segmentation, which effectively captures prior information of feature appearances. The feature appearances are beneficial to reduce the computational complexity for deterministic fitting methods. SDF also includes two original elements, i.e., a deterministic sampling algorithm and a novel model selection algorithm. The two algorithms are tightly coupled to boost the performance of SDF in both speed and accuracy. Specifically, the proposed sampling algorithm leverages the grouping cues of superpixels to generate reliable and consistent hypotheses. The proposed model selection algorithm further makes use of desirable properties of the generated hypotheses, to improve the conventional fit-and-remove framework for more efficient and effective performance. The key characteristic of SDF is that it can efficiently and deterministically estimate the parameters of model instances in multi-structure data. Experimental results demonstrate that the proposed SDF shows superiority over several state-of-the-art fitting methods for real images with single-structure and multiple-structure data.Comment: Accepted by European Conference on Computer Vision (ECCV

    Dietary phytogenics and galactomannan oligosaccharides in low fish meal and fish oil-based diets for European sea bass (Dicentrarchus labrax) juveniles: Effects on gut health and implications on in vivo gut bacterial translocation

    Get PDF
    European sea bass were fed four low FM/FO (10%/6%) diets containing galactomannan oligosaccharides (GMOS), a mixture of garlic oil and labiatae plants oils (PHYTO), or a combination of both functional products (GMOSPHYTO) for 63 days before exposing the fish to an intestinal Vibrio anguillarum infection combined with crowding stress. In order to evaluate functional diets efficacy in terms of gut health maintenance, structural, cellular, and immune intestinal status were evaluated by optical and electron microscopy and gene expression analyses. A semi-automated software was adapted to determine variations in goblet cell area and mucosal mucus coverage during the challenge test. Feeding with functional diets did not affect growth performance; however, PHYTO and GMOS dietary inclusion reduced European sea bass susceptibility to V. anguillarum after 7 days of challenge testing. Rectum (post-ileorectal valve) showed longer (p = 0.001) folds than posterior gut (pre-ileorectal valve), whereas posterior gut had thicker submucosa (p = 0.001) and higher mucus coverage as a result of an increased cell density than rectum. Functional diets did not affect mucosal fold length or the grade of granulocytes and lymphocytes infiltration in either intestinal segment. However, the posterior gut fold area covered by goblet cells was smaller in fish fed GMOS (F = 14.53; p = 0.001) and PHYTO (F = 5.52; p = 0.019) than for the other diets. PHYTO (F = 3.95; p = 0.049) reduced posterior gut goblet cell size and increased rodlet cell density (F = 3.604; p = 0.068). Dietary GMOS reduced submucosal thickness (F = 51.31; p = 0.001) and increased rodlet cell density (F = 3.604; p = 0.068) in rectum. Structural TEM analyses revealed a normal intestinal morphological pattern, but the use of GMOS increased rectum microvilli length, whereas the use of PHYTO increased (p 640.10) Ocln, N-Cad and Cad-17 posterior gut gene expression. After bacterial intestinal inoculation, posterior gut of fish fed PHYTO responded in a more controlled and belated way in terms of goblet cell size and mucus coverage in comparison to other treatments. For rectum, the pattern of response was similar for all dietary treatments, however fish fed GMOS maintained goblet cell size along the challenge test

    Genetic spectrum of hereditary neuropathies with onset in the first year of life

    Get PDF
    Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine–Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot–Marie–Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot–Marie–Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot–Marie–Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset

    The pervasive effects of recombinant Fasciola gigantica Ras-related protein Rab10 on the functions of goat peripheral blood mononuclear cells

    Get PDF
    Background: Fasciola gigantica-induced immunomodulation is a major hurdle faced by the host for controlling infection. Here, we elucidated the role of F. gigantica Ras-related protein Rab10 (FgRab10) in the modulation of key functions of peripheral blood mononuclear cells (PBMCs) of goats.Methods: We cloned and expressed recombinant FgRab10 (rFgRab10) protein and examined its effects on several functions of goat PBMCs. Protein interactors of rFgRab10 were predicted in silico by querying the databases Intact, String, BioPlex and BioGrid. In addition, a total energy analysis of each of the identified interactions was also conducted. Gene Ontology (GO) enrichment analysis was carried out using FuncAssociate 3.0.Results: The FgRab10 gene (618 bp), encodes 205-amino-acid residues with a molecular mass of ~23 kDa, had complete nucleotide sequence homology with F. hepatica Ras family protein gene (PIS87503.1). The rFgRab10 protein specifically cross-reacted with anti-Fasciola antibodies as shown by Western blot and immunofluorescence analysis. This protein exhibited multiple effects on goat PBMCs, including increased production of cytokines [interleukin-2 (IL-2), IL-4, IL-10, transforming growth factor beta (TGF-β) and interferon gamma (IFN-γ)] and total nitric oxide (NO), enhancing apoptosis and migration of PBMCs, and promoting the phagocytic ability of monocytes. However, it significantly inhibited cell proliferation. Homology modelling revealed 63% identity between rFgRab10 and human Rab10 protein (Uniprot ID: P61026). Protein interaction network analysis revealed more stabilizing interactions between Rab proteins geranylgeranyltransferase component A 1 (CHM) and Rab proteins geranylgeranyltransferase component A 2 (CHML) and rFgRab10 protein. Gene Ontology analysis identified RabGTPase mediated signaling as the most represented pathway.Conclusions: rFgRab10 protein exerts profound influences on various functions of goat PBMCs. This finding may help explain why F. gigantica is capable of provoking recognition by host immune cells, less capable of destroying this successful parasite

    Malaltia de marchiafava-bignami amb referència a una observació personal

    No full text
    corecore